Surname	Centre Number	Candidate Number
First name(s)		0

GCSE

C300UA0-1

A23-C300UA0-1

WEDNESDAY, 8 NOVEMBER 2023 – MORNING

MATHEMATICS – Component 1 Non-Calculator Mathematics

HIGHER TIER

2 hours 15 minutes

ADDITIONAL MATERIALS

An additional formulae sheet.

The use of a calculator is not permitted in this examination. A ruler, protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all the questions in the spaces provided.

If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.

Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the need for good English and orderly, clear presentation in your answers.

1						
For Examiner's use only						
Question	Maximum Mark	Mark Awarded				
1.	2					
2.	4					
3.	3					
4.	2					
5.	3					
6.	5					
7.	2					
8.	3					
9.	2					
10.	6					
11.	3					
12.	5					
13.	5					
14.	7					
15.	5					
16.	5					
17.	7					
18.	6					
19.	5					
20.	4					
21.	5					
22.	4					
23.	4					
24.	6					
25.	7					
26.	5					
27.	2					
28.	3					
Total	120					

© WJEC CBAC Ltd.

BE/GR*(A23-C300UA0-1)

Formula list

Area and volume formulae

Where r is the radius of the sphere or cone, l is the slant height of a cone and h is the perpendicular height of a cone:

Curved surface area of a cone = πrl Surface area of a sphere = $4\pi r^2$ Volume of a sphere = $\frac{4}{3}\pi r^3$ Volume of a cone = $\frac{1}{3}\pi r^2h$

Kinematics formulae

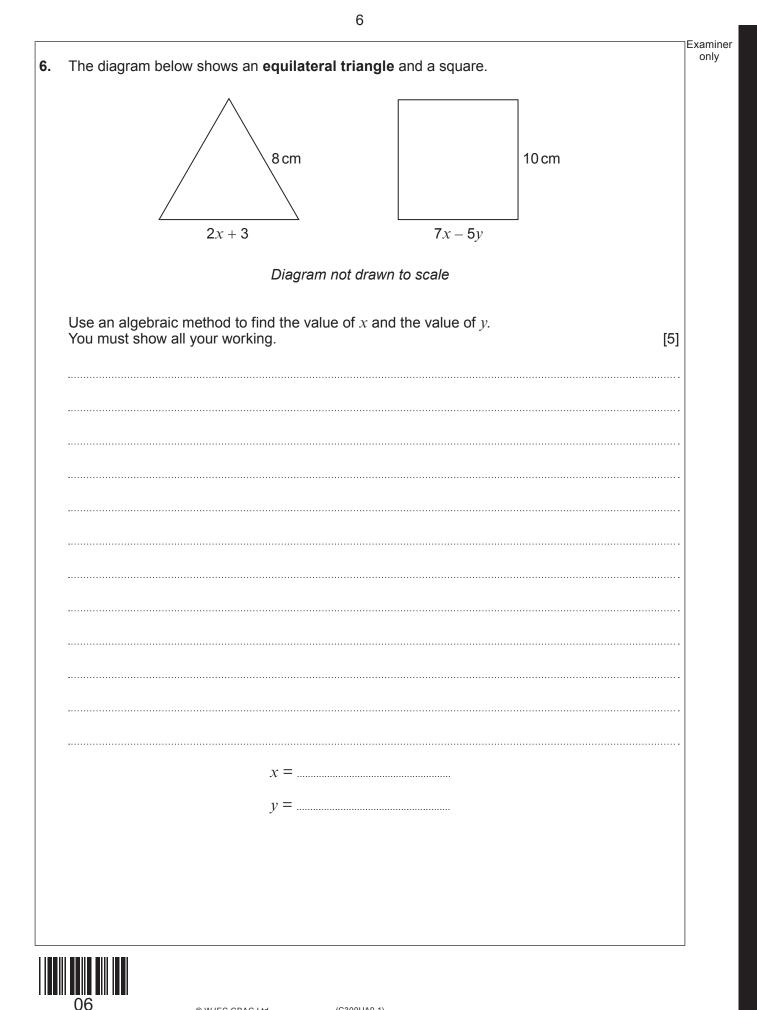
Where *a* is constant acceleration, *u* is initial velocity, *v* is final velocity, *s* is displacement from the position when t = 0 and *t* is time taken:

v = u + at $s = ut + \frac{1}{2}at^{2}$ $v^{2} = u^{2} + 2as$

C300UA01 03

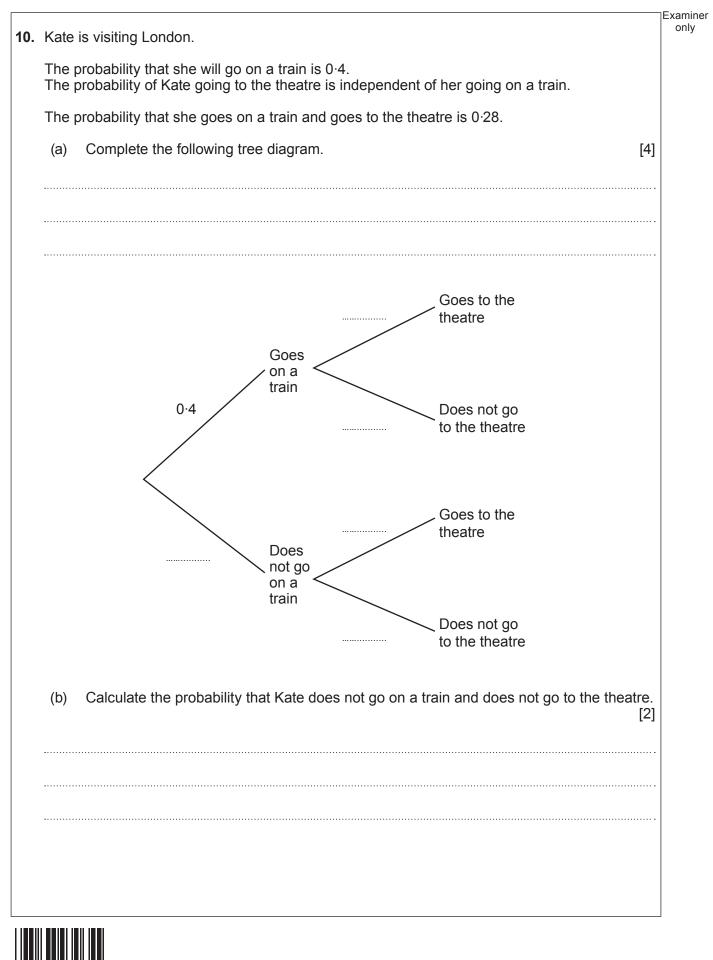
Ivy mixes lemon juice, pineapple juice and orange juice in the ratio 1 : 2 : 7 to make a fruit drink. Ivy has 330 ml of her fruit drink in a glass.	
How much pineapple juice is in Ivy's glass?	[2]
ml	
The shape below consists of a square surrounded by four semi-circles. The diameter of each semi-circle is 12 cm.	
Diagram not drawn to scale	
Work out the area of the shape. Give your answer in the form $a + b\pi$.	[4]
Area = cm ²	

lzaan s	ays,	_					
	\leq	The blo	ck has a	mass of les:	s than 5 kg.	\bigcirc	
ls Izaai	n correct?						[3]
	Ye	S		No		Cannot tell	
Show h	now you dec	ide.					


4

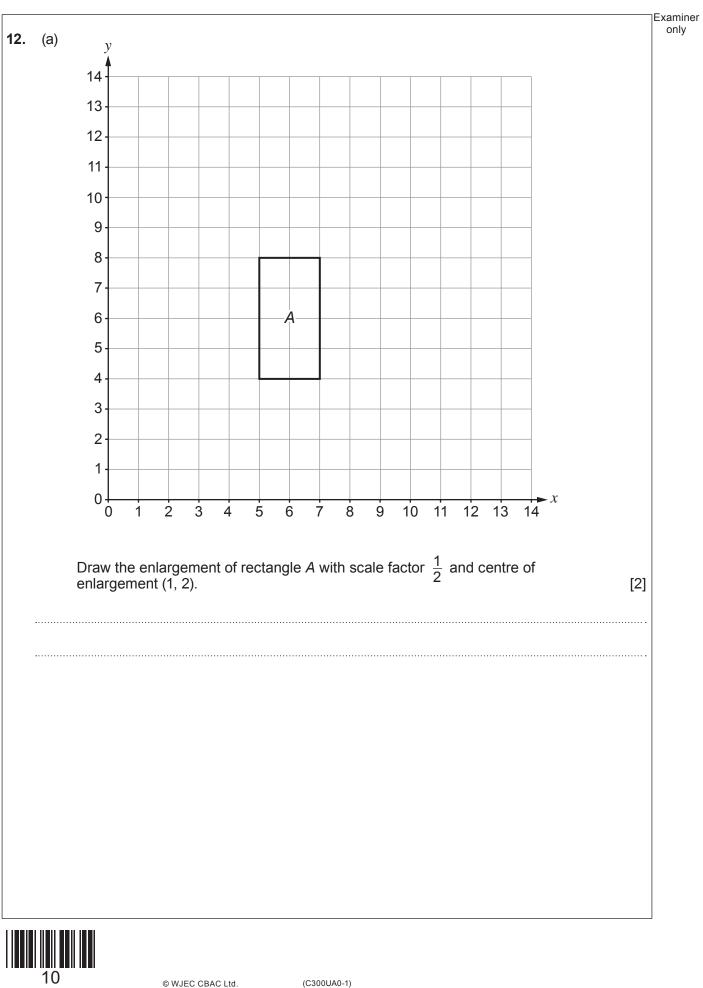
C300UA01 05

4.	Oliver and Kian bake cakes.	Examine only
	The mass of Oliver's cake is between 400g and 500g inclusive. The mass of Kian's cake is between 200g and 300g inclusive.	
	Complete the inequality to show the least and greatest possible differences between the mass of their cakes. [2]	
	\leqslant mass difference \leqslant	
5.	Jen is mixing some paints to make brown paint.	
	She made orange paint by mixing red paint and yellow paint. 40% of the orange paint was red paint.	
	She then mixes the orange paint with some blue paint in the ratio 20 : 21 to make brown paint.	
	What fraction of the brown paint is red paint? [3]	



C300UA01 07

7.	(a) Simplify $7\sqrt{2} \times 3$	[1]	Examiner only
	(b) Complete the calculation below. $2\sqrt{11} \times \dots = 22$	[1]	
8.	Factorise $3xy^2 + 6x^2y$	[3]	
			C300UA01
9.	Hans thinks of a number. When his number is multiplied by 2.4×10^5 , the answer is 9.6×10^8 . What number did Hans think of?	[0]	C 300
	Write your answer in standard form.	[2]	



08

C300UA01 09

11.	It takes 2 hours to empty 8 identical tanks of water using 9 identical pumps.	ŀ	Examiner only
	How long would it take to empty 2 of these tanks using 3 of these pumps?	[3]	
			C300UA01
			C300

11 Examiner only (b) y 7 6 5 4 3 В 2 1 - X 5 -5 -3 -ż 0 2 3 4 6 -6 _4 _1 Ż 1 2 .3 4 C300UA01 11 -5 6 7 Triangle *B* is reflected in the line x = 0 to give triangle *C*. Triangle *C* is rotated 90° clockwise about (0, 0) to give triangle *D*. Draw triangle *C* and triangle *D*. [2] (i) Describe the **single** transformation that maps triangle *B* to triangle *D*. [1] (ii)

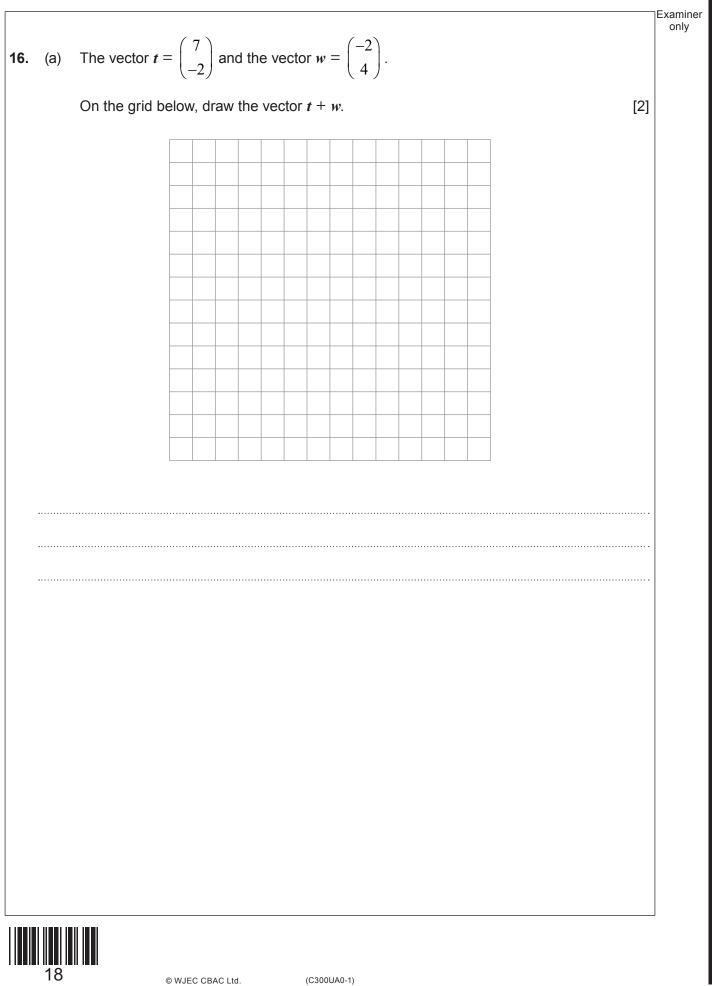
40	(-)		Ex	xaminer only
13.	(a)	Show that the lines $3u = 12x = 0$ and $2u = 8x = 13$		
		3y - 12x = 9 and $2y = 8x - 13$		
		are parallel to each other.	[3]	
	•••••			
	•••••			
	·····			
	•••••			
	•••••			
	12	S WJEC CBAC Ltd. (C300UA0-1)		

13 Examiner only The diagram shows the curve $y = 5 - 4x - x^2$. (b) 5 - X -Ś C300UA01 13 Calculate the coordinates of the turning point of the curve. [2] _____ (.....)

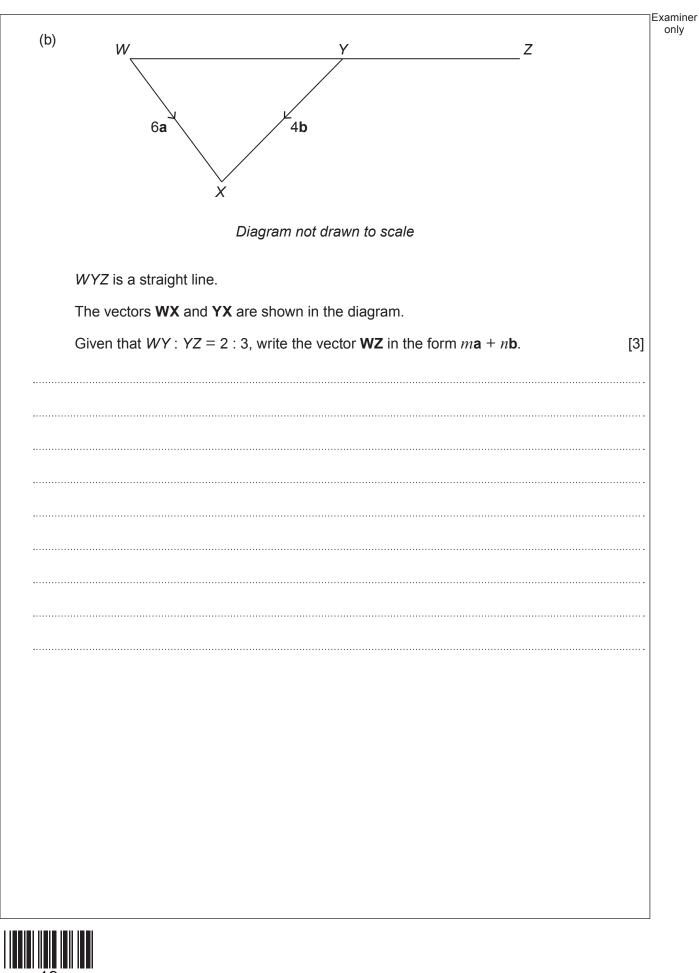
14

				Examine
14.	(a)	(i)	Find the next term in this sequence.	[2] only
			$\frac{5}{2}$ $-\frac{25}{4}$ $\frac{125}{8}$ $-\frac{625}{16}$	
			2 4 0 10	
		·····		
		•••••		
		(ii)	Find the next term in this Fibonacci-style sequence.	[1]
			10 15 25 40 65	
	(b)	The	<i>n</i> th term of a sequence is $(10\sqrt{5})^n$.	
	(b)	Calc	ulate the 4th term of this sequence.	
		You	must simplify your answer.	[2]
	•••••			
			4th term =	

(C)	Find the	nth term	of the sec	quence b	elow.			[2]	xar or
		3	15	35	63	99			
			<i>n</i> th	n term =			 		
]	
15									


i. (a)	Factorise $5x^2 + 13x + 6$.	[2]
	Advice is trying to colve $2 4x > 11$	
(b)	Adrian is trying to solve $3 - 4x > 11$. He writes the following:	
	3 - 4x > 11 $- 4x > 8$	
	$\frac{x > \frac{8}{-4}}{x > -2}$	
	Adrian's method is incorrect. Explain why.	[1]
(C)	Simplify $\frac{(x^4)^3}{x^2}$.	[2]
16		

BLANK PAGE


PLEASE DO NOT WRITE ON THIS PAGE

17.	(a)	Evaluate $8^{\frac{5}{3}}$.	Exami only
	(b)	Write $\frac{6}{\sqrt{2}}$ in the form $a\sqrt{2}$ where <i>a</i> is an integer.	[2]
	·····		
	(C)	Estimate the value of $\frac{(1.96 \times 10^8) + (6.89 \times 10^8)}{298}$	101
		Write your answer in standard form.	[3]

Examiner only

18. Lena sold 200 drinks on Saturday.

This table shows some information about these drinks.

	Теа	Coffee	Milkshake	Totals
Small	5			61
Medium			6	
Large		42		
Totals			66	200

On that Saturday:

- 15% of the drinks sold were large teas.
- The ratio of the number of medium teas to the number of medium milkshakes sold was 3:1.
- The number of large milkshakes sold was double the number of small milkshakes sold.

Complete the table above using this information.

One of the drinks is selected at random. Find the probability that this drink was either a medium tea or a medium coffee.

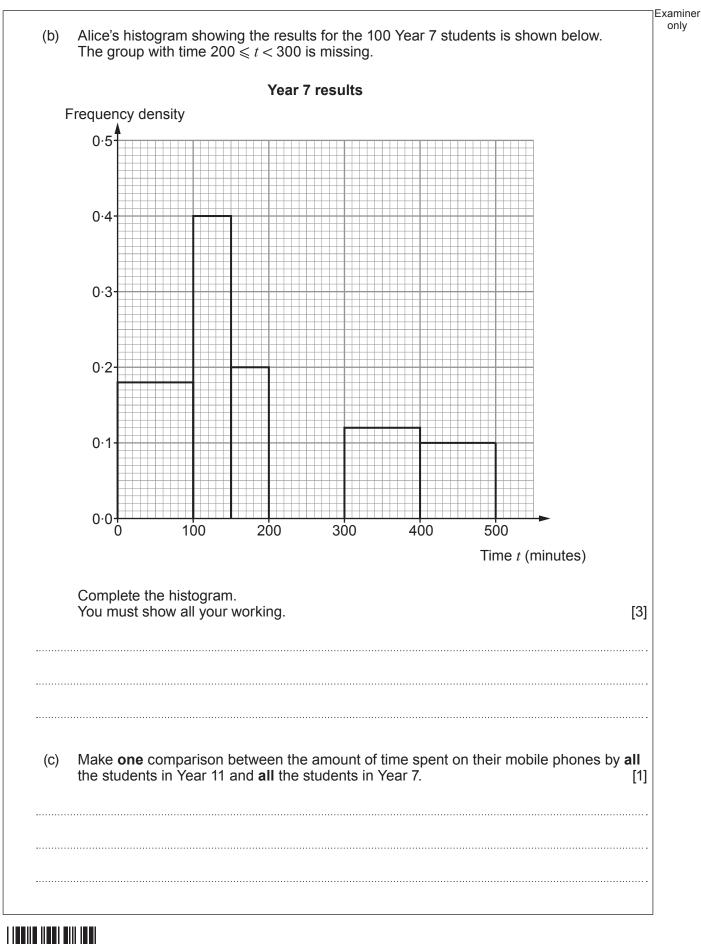
Probability of selecting a medium tea or a medium coffee =

[6]

1134	1134 can be written as $2 \times 3^4 \times 7$.					
(a)	Find the highest common factor of 504 and 1134. Give your answer as an integer. [4	4]				
•••••						
	Highest common factor of 504 and 1134 =					
(b)	What is the smallest whole number 1134 can be divided by to give a square number? [1]				

		Examiner only
20.	<i>X</i> , <i>Y</i> and <i>Z</i> are points on the circumference of a circle with centre <i>O</i> .	
	Maia thinks that \hat{XYZ} is 58°.	
	Prove that Maia is incorrect.	
	You must show all your working and give a reason for each step of your proof. [4]	
	23 © WJEC CBAC Ltd. (C300UA0-1) Turn over.	I.

Examiner only


21. Alice is investigating how much time, in minutes, pupils at her school spend on their mobile phones.

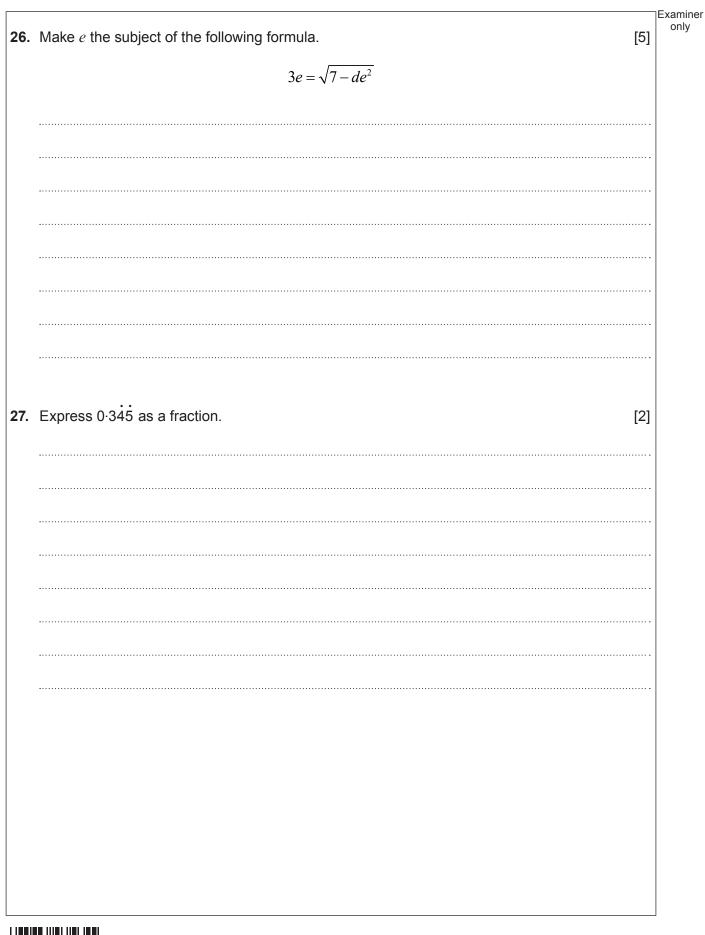
She asks 100 students in Year 11 and 100 students in Year 7 to record how much time they each spend on their mobile phones on a Monday.

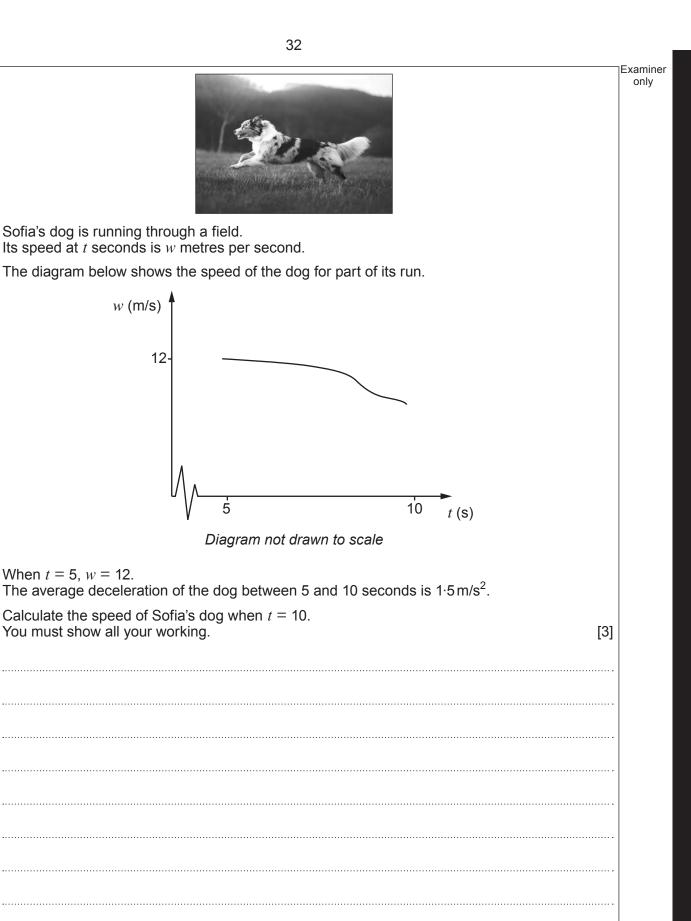
(a) The results for Year 11 are shown in the table below.

Time <i>t</i> (minutes)	0 ≤ <i>t</i> < 50	50 <i>≤ t</i> < 100	100 <i>≤ t</i> < 200	200 <i>≤ t</i> < 300	300 <i>≤ t</i> < 400	400 ≤ <i>t</i> < 500
Number of students	3	5	20	28	30	14
A	lice display	s her results ir	the histogram	shown below.		
			Year 11 resu			
Fre	quency der	nsity				
	0.4					
	0.0					
	0.3-					
	0.2					
	0.1					
	0.0					
	0.0	100	200 30	0 400	500	
					Time t (mir	nutes)
G	live one cri	ticism of Alice'	s histogram.			[1
·····						

	$B_0 = 1000$ $B_{n+1} = 1.2B_n \text{ where } n \ge 0$	
(a) Show that the	number of cells of bacteria after 1 day is 1200.	[1]
(b) Use this form	ula to find the number of cells of bacteria after 3 days.	[3]
Num	ber of cells of bacteria after 3 days =	

Dlug	Ded	Croop	Vellow	Durala
Blue	Red	Green	Yellow	Purple
Each time she	3 of these wooden b does this, she place rranging the blocks	es them on top of ea	ch other.	
			reen Red	
	R	led Pu	ırple	
(a) Calculat	te the number of diff	ferent ways of arrang	ing the blocks	[2]
		erent ways of allang	ing the blocks.	[2]
(b) How ma	any arrangements ar	re there where the m	iddle block is either	blue or red? [2]
(b) How ma	any arrangements ar	re there where the m	iddle block is either	blue or red? [2]
(b) How ma	any arrangements ar	re there where the m	iddle block is either	blue or red? [2]
(b) How ma	any arrangements ar	re there where the m	iddle block is either	blue or red? [2]
(b) How ma	any arrangements ar	re there where the m	iddle block is either	blue or red? [2]
(b) How ma	any arrangements ar	re there where the m	iddle block is either	blue or red? [2]
(b) How ma	any arrangements ar	re there where the m	iddle block is either	blue or red? [2]
(b) How ma	any arrangements ar	re there where the m	iddle block is either	blue or red? [2]
(b) How ma	any arrangements ar	re there where the m	iddle block is either	blue or red? [2]
(b) How ma	any arrangements ar	re there where the m	iddle block is either	blue or red? [2]


24.	The velocity-time graph below shows the velocity of a car for the first 20 seconds from rest.
	Velocity (m/s)
	20-
	10-
	0 4 8 12 16 20 Time (seconds)
	Acceleration = m/s ²


(b)	Use 5 vertical strips of equal width to calculate an estimate of the distance travelled by the car during the first 20 seconds of motion. [3]	Ē
••••••		
	Distance travelled = m	

(a)	$h(x) = x^2 + 3.$	
	Show that $h^{-1}(x)$ has no solutions for $x < 3$.	[3]
(b)	$f(x) = x^2 + 5.$ g(x) = x - 4.	
	Show that $fg(x) - gf(x) = 20 - 8x$. You must show all your working.	[4]

Speed when t = 10 is m/s

END OF PAPER

28.

© WJEC CBAC Ltd.

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examin only

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

